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The prediction of subcellular localization of proteins from their primary sequence is a challenging problem in
bioinformatics. We have created a Bayesian network localization predictor called PSLT that is based on the
combinatorial presence of InterPro motifs and specific membrane domains in human proteins. This probabilistic
framework generates a likelihood of localization to all organelles and allows to predict multicompartmental proteins.
When used to predict on nine compartments, PSLT achieves an accuracy of 78% as estimated by using a 10-fold
cross-validation test and a coverage of 74%. When used to predict the localization of proteins from other closely
related species, it achieves a prediction accuracy and a coverage >80%. We compared the localization predictions of
PSLT to those determined through GFP-tagging and microscopy for a group of human proteins. We found two
general classes of proteins that are mislocalized by the GFP-tagging strategy but are correctly localized by PSLT. This
suggests that PSLT can be used in combination with experimental approaches for localization to identify proteins for
which additional experimental validation is required. We used our predictor to annotate all 9793 human proteins
from SWISS-PROT release 41.25, 16% of which are predicted by PSLT to be present in more than one compartment.

[Supplemental material is available online at www.genome.org and www.mcb.mcgill.ca/∼hera/PSLT.]

Eukaryotic proteins are organized into organelles and suborgan-
elles that generate appropriate environments for their specialized
functions. Thus, subcellular localization often offers important
clues toward determining the function of an uncharacterized
protein. The mechanisms of targeting of proteins to various sub-
cellular localizations have been widely studied, and the predomi-
nant mechanisms uncovered so far involve specific amino acid
sequence motifs. The consequences of mislocalization and
mistargeting are manifested in a number of human genetic dis-
eases, including cystic fibrosis (Skach 2000), Wilson’s disease
(Payne et al. 1998), and juvenile pulmonary emphysema (Parfrey
et al. 2003).

There are numerous experimental approaches that attempt
to determine both the subcellular localization of a protein and
the amino acid motifs responsible for this targeting. Although
these methods are capable of determining the linear amino acid
motifs that are necessary for targeting, they are generally not able
to help determine structural requirements and are generally not
suited for use in a high-throughput fashion. The latter point is
important because high-throughput proteomic efforts are now
able to identify the most abundant proteins of an organelle (Bell
et al. 2001; Michaud and Snyder 2002; Huh et al. 2003; Taylor
et al. 2003). However, the localizations of proteins identified by
these approaches are prone to error (i.e., they may have high
rates of false-positive and/or false-negative entries). Furthermore,
the sensitivity of these approaches is not sufficient to detect the
full protein complement of organelles due to, for example, the
low abundance of some proteins. Because the cDNA sequences of
most human proteins are now available, bioinformatic predictors
of subcellular localization offer a complementary and compre-
hensive approach that can help resolve such noisy proteomic
data sets. This will provide a clearer, more complete picture of

basic cellular organization and may also shed more light on the
mechanisms of subcellular targeting.

The existing bioinformatics localization predictors in the
literature can be broadly grouped into three categories.

1. Predictors based on amino acid composition. Several machine
learning-based classification approaches have been used to
predict subcellular localization based uniquely on amino acid
composition, including neural networks (Reinhardt and Hub-
bard 1998) and support vector machines (Hua and Sun 2001).
Several subsequent localization methods also incorporate ad-
ditional information such as so-called quasi-sequence order
effects (Chou 2001; Cai et al. 2002). These methods have the
advantage of achieving a very high coverage but generally do
not address the problem of multicompartmental proteins.
This category also includes predictors such as SignalP (Nielsen
et al. 1997), MitoProt (Claros and Vincens 1996), TargetP
(Emanuelsson et al. 2000), and Predotar (www.inra.fr/predotar/),
which aim at identifying specific signal sequences for the ER,
mitochondria, and/or chloroplast and can in some cases pre-
dict proteins to be in several compartments simultaneously.

2. Predictors that determine protein localization by integrating
various protein characteristics, including targeting motifs of
different organelles. Such predictors include PSORT (Nakai
and Kanehisa 1992) and a Bayesian framework (Drawid and
Gerstein 2000). PSORT is a publicly available integrated expert
system based on the sequential application of if/then rules
relating to amino acid composition and the presence of tar-
geting signals to various organelles. PSORT was further refined
into a more probabilistic framework based on the k–-nearest-
neighbors method (Horton and Nakai 1996). The integrated
Bayesian system created by Drawid and Gerstein for the pre-
diction of yeast protein localization is based on prior knowl-
edge of the proportion of proteins in the different compart-
ments considered. This framework can address the problem of
multicompartmental proteins, since a probability of localiza-
tion can be assigned to all proteins in all compartments. How-
ever, because it requires the knowledge of several types of
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protein characteristics (thus requiring extensive experimental
data such as expression data of cells under different condi-
tions as well as knockout mutation viability information), it is
not well suited for the annotation of unknown proteins gen-
erated by the numerous high-throughput genomics and pro-
teomics projects.

3. Homology-based predictors. Such methods include phyloge-
netic profiling of proteins (Marcotte et al. 2000), which can be
applied to the prediction of proteins in organelles of endo-
symbiotic origins, and a protein domain projection method,
which uses a measure of the co-occurrence of SMART motifs to
predict localization (Mott et al. 2002). Support vector ma-
chines and a new hybridization approach have also been used
to classify proteins into subcellular compartments (Chou and
Cai 2002, 2003). The most recent addition to this category is
the Proteome Analyst, which uses a naïve Bayesian network to
predict localization based mostly on the SWISS-PROT key-
words and annotations that can be extracted from the closest
homologs of the query protein (Lu et al. 2004). The Proteome
Analyst achieves high prediction accuracies by using the an-
notation of very closely related sequences. This is in contrast
to most previous predictors, which are trained and tested on
data sets consisting of proteins of limited pairwise sequence
identity (when training and predicting on proteins from more
than one organism).

Existing predictors have several shortcomings. Most localization
prediction methods achieve high accuracy for the most popu-
lated compartments, such as the nucleus and cytosol, but are
generally less accurate on the numerous compartments contain-
ing fewer individual proteins. Many existing predictors use only
three or four different subcellular localizations. Moreover, the
sets of proteins used to train these methods often do not contain
transmembrane proteins because the localization of these pro-
teins is believed to be already elucidated (Huang and Li 2004).
However, although there are accurate predictors of transmem-
brane domains in proteins (Krogh et al. 2001), these do not pre-
dict the organellar location of transmembrane proteins. Last,
very few predictors deal with the issue of multicompartmental
proteins (proteins that may be localized to different organelles).
Currently, there is no precise estimate of how many proteins are
multicompartmental.

This article presents PSLT (Protein Subcellular Localization
Tool, pronounced “silt”), a system that addresses the aforemen-
tioned issues and problems. PSLT uses the combinatorial pres-
ence of InterPro motifs, as well as signal peptides and the number
of transmembrane domains in human proteins, to predict the
subcellular localization of proteins within a Bayesian framework.
InterPro is a database of protein domains, families, functional
sites, and posttranslational modifications (Mulder et al. 2003).
Collectively, we refer to these objects as InterPro motifs, all of
which can be used alone or in combination to predict subcellular
localization. Amino-terminal signal peptides are frequently re-
sponsible for targeting of nascent polypeptides to the ER, allow-
ing for subsequent transport through the secretory pathway (von
Heijne 1990; Rapoport 1992). When considered in combination
with the presence of transmembrane domains, signal peptides
can also facilitate the prediction of subcellular localization.

PSLT uses a Bayesian framework to integrate the presence or
absence of combinations of motifs in a statistically coherent
manner. The accuracy of PSLT is estimated to be 78% using a
10-fold cross-validation test and >85% using an independent
data set test. When used to predict the localization of the inde-
pendent set of human proteins from the LIFEdb project (Simpson
et al. 2000), PSLT was capable of detecting several examples of
possible GFP-localization bias, indicating the proteins for which

additional experimental validation of localization is required.
PSLT was used to annotate all 9793 human proteins contained in
SWISS-PROT release 41.25. The results suggest that at least 16%
of human proteins are multicompartmental. These annotations
are available at www.mcb.mcgill.ca/∼hera/PSLT.

RESULTS

Statistical Tests of Accuracy
The prediction accuracy of PSLT is assessed by three distinct ap-
proaches: a self-consistency test, a 10-fold cross-validation test,
and independent data set tests. The different data sets used to
train and test PSLT are shown in Table 1. With respect to the
self-consistency test (also known as the resubstitution test), the
accuracy of the predictor is evaluated by using the same data set
used for training. As shown in Table 2, the overall prediction
accuracy of PSLT using the self-consistency test on the Hera (Hu-
man Endoplasmic Reticulum Aperçu) data set (see Methods) is
90% and the coverage is 88%.

In the 10-fold cross-validation test, the data set is randomly
partitioned into 10 distinct nonoverlapping sets of proteins.
Nine of these sets are used to train the predictor. The prediction
accuracy of the predictor is evaluated on the remaining excluded
group. This procedure is repeated 10 times. The cross-validation
prediction accuracy shown in Table 2 is the average of the 10
experiments. The overall prediction accuracy using the 10-fold
cross-validation test on the Hera human data set is 78% and the
coverage is 74%.

The third approach used to assess the prediction accuracy of
PSLT is an independent data set test. In this test, PSLT is trained
by using the entire Hera human data set and tested indepen-
dently by using the LIFEdb GFP human data set. As shown in
Table 3, the overall prediction accuracy of PSLT using this inde-
pendent test is 55%. The coverage of the GFP data set is 50%. We
note that many of the proteins in the LIFEdb GFP data set are
hypothetical proteins derived from cDNA sequence data and
have not been previously studied. Their subcellular localization
was experimentally determined by tagging GFP to their N and C
termini (in two separate experiments) and by visualizing the re-
sulting protein localization by microscopy (Simpson et al. 2000).
This experimental method will produce many localization errors
because the terminal GFP tags can mask known localization sig-
nals in the proteins, as well as modify expression levels. For ex-
ample, a lumenal endoplasmic reticulum protein possessing both
an N-terminal signal peptide and a C-terminal KDEL retrieval

Table 1. Number of Proteins per Compartment in the
Data Sets

Hera
human

data set
Yeast

data set
LIFEdb GFP

data set
Mouse

data set

ER 333 184 49 77
Golgi 90 75 20 61
Cytosol 349 213 90 333
Nucleus 581 462 81 598
Peroxisome 37 46 1 18
Plasma membrane 205 141 14 36
Lysosome 91 20 1 46
Mitochondria 218 345 31 179
Secreted 294 14 0 454
Multicompartmental 18 112 105 293

Total 2216 1612 392 2095
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sequence will probably be mislocalized in both the C- and N-
terminal GFP tagging constructs.

Because of the possibility of false-positive and false-negative
localization annotations of the GFP high-throughput localiza-
tion data set, we also measured the prediction accuracy of PSLT
on the subset of proteins of the LIFEdb data set that have been
independently studied by other research groups in a non–high-
throughput manner and that have localization that is available
in the literature. This subset consists of 82 proteins. As shown in
Table 3 in the middle pair of columns, the prediction accuracy of
PSLT on this subset of the LIFEdb data set is 87% with a coverage
of 67%. This improved performance is much closer to the values
obtained by the 10-fold cross-validation test on human proteins
from the Hera data set and by the independent test on the mouse
data set (see “Generalization to Other Organisms”). In contrast,
the concordance of the high-throughput experimental GFP-tag-
ging method with the literature was evaluated to be 59% (as
shown in the rightmost pair of columns in Table 3). We decided
to further investigate the discrepancy between the prediction ac-
curacy results of PSLT on the full LIFEdb data set and on the
subset verified by the literature. Of the 197 proteins from the full

LIFEdb GFP data set for which PSLT could predict localization,
the PSLT prediction disagrees with the GFP localization results for
89 proteins. Although many proteins in the LIFEdb are annotated
“unknown” or “hypothetical,” we found reports of experimental
evidence for the localization of 25 of the 89 proteins in the lit-
erature. Table 4 shows the comparisons between the LIFEdb lo-
calization annotation and the PSLT localization prediction, as
well as the information currently available in the literature for
these 25 proteins. The available scientific literature confirms the
LIFEdb localization annotation of five of the 25 proteins and the
PSLT prediction of 20 of the 25 proteins (including two proteins
that have been confirmed to be in both the LIFEdb annotated
compartment and the compartment predicted by PSLT). Al-
though experimental evidence in the literature could be errone-
ous or incomplete, these results suggest that the prediction ac-
curacy of PSLT may exceed the prediction accuracy of the LIFEdb
GFP data set.

We further studied the cases of proteins with LIFEdb local-
ization annotation that disagrees with the PSLT prediction. We
note two general recurring cases: (1) proteins that have been
shown in the literature to be plasma membrane or secreted pro-
teins but that are annotated as being localized elsewhere in
LIFEdb, and (2) proteins predicted by PSLT as peroxisomal but
annotated in LIFEdb as localized to another compartment (usu-
ally the mitochondria).

With respect to case 1, many proteins predicted to be local-
ized in the plasma membrane or secreted by PSLT are annotated
by LIFEdb as being localized elsewhere in the cell, mostly in the
ER but also in the cytosol and the nucleus. It is possible that these
proteins spend a longer than expected amount of time in the ER
(potentially due to an increase in the duration of folding caused
by the added GFP tag) or never even succeed in entering the ER.
This may explain why such proteins are visualized via micros-
copy to be localized to the ER or the cytosol when ultimately they
are destined for the plasma membrane. This hypothesis may also
explain the low proportion of plasma membrane proteins (6% to
7%) in the LIFEdb GFP data set compared with other public lo-
calization databases.

With respect to case 2, all proteins predicted by PSLT to be
peroxisomal are annotated as being localized elsewhere in the
cell by the LIFEdb GFP data set. However, we note that several of
these proteins have been confirmed to be peroxisomal in the
literature. Perhaps the GFP tag systematically targets the peroxi-

Table 3. Prediction Accuracy of PSLT on an Independent Human Data Set

Independent test
of PSLT on all proteins

of LIFEdb data set
(second-best test)

Independent test of PSLT
on subset of LIFEdb proteins

verified by literature
(second-best test)

Concordance between
LIFEdb GFP-based

annotation and the literature

Sensitivitya PPVb Sensitivitya PPVb Sensitivitya PPVb

ER 32 (57)% 47 (60)% 100 (100)% 100 (100)% 100% 38%
Golgi 25 (42)% 50 (71)% 0 (100)% 0 (0)% 75% 75%
Cytosol 44 (77)% 63 (77)% 82 (82)% 82 (82)% 64% 74%
Nucleus 85 (88)% 66 (89)% 100 (100)% 89 (94)% 84% 76%
Peroxisome — 0 (0)% 100 (100)% 67 (67)% 67% 100%
Plasma memb 54 (57)% 39 (53)% 73 (82)% 100 (100)% 20% 75%
Lysosome — 0 (0)% 100 (100)% 100 (100)% 0% 0%
Mitochondria 25 (33)% 43 (57)% 100 (100)% 100 (100)% 50% 40%
Extracellular — — 100 (100)% 33 (50)% 0% 0%
Overall accuracy 55 (72)% 87 (88)% 59%
Coverage 50 (50)% 67 (67)% —

aSensitivity calculated as TP/(TP + FN).
bPPV indicates positive predictive value (calculated as TP/[TP + FP]).

Table 2. Prediction Accuracy of PSLT on Human Proteins

Self-consistency test
(second-best test)

10-fold cross
validation test

(second-best test)

Sensitivitya PPVb Sensitivitya PPVb

ER 82 (95)% 93 (98)% 69 (82)% 83 (85)%
Golgi 84 (91)% 87 (98)% 60 (64)% 74 (81)%
Cytosol 90 (98)% 85 (96)% 65 (83)% 68 (78)%
Nucleus 96 (99)% 93 (97)% 93 (97)% 84 (93)%
Peroxisome 73 (94)% 89 (94)% 43 (64)% 50 (67)%
Plasma membrane 94 (98)% 86 (96)% 89 (91)% 77 (89)%
Lysosome 81 (96)% 90 (99)% 60 (71)% 71 (76)%
Mitochondria 88 (98)% 85 (97)% 67 (76)% 61 (72)%
Extracellular 95 (100)% 91 (99)% 89 (93)% 87 (91)%
Overall accuracy 90 (97)% 78 (86)%
Coverage 88 (88)% 74 (74)%

aSensitivity calculated as TP/(TP + FN).
bPPV indicates positive predictive value (calculated as TP/[TP + FP]).
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somal proteins to the mitochondria or elsewhere in the cell. It
should be noted, however, that there exist several proteins that
are actually annotated to be localized in both the peroxisome
and the mitochondria in SWISS-PROT. It could be the case that
some of the proteins predicted by PSLT to be peroxisomal and by
the GFP localization to be mitochondrial are actually multicom-
partmental proteins.

In general, disagreements between the prediction of PSLT
and one specific experimental approach might warrant further
investigation using different experimental techniques to verify
the localization (e.g., by immunofluorescence microscopy of nor-
mal cells using an antibody specific to the protein of interest).
Conversely, when the prediction of PSLT agrees with experimen-
tal evidence, our belief that the protein is indeed localized to this
compartment should be strengthened.

Comparison Between PSLT and the SMART Domain
Projection Method
PSLT uses a Bayesian approach to predict protein localization
based on the co-occurrence of protein motifs/domains, making it
methodologically similar to the domain projection method de-
scribed previously (Mott et al. 2002). This method uses the co-
occurrence of 300 SMART domains that, when projected onto a
two-dimensional space, cluster into three groups corresponding
to secreted, cytoplasmic, and nuclear compartments. This do-
main projection method was evaluated by using a set of diverse
eukaryotic proteins containing at least one of the 300 SMART
motifs considered and previously annotated with localization in-
formation by Meta-A (Eisenhaber and Bork 1998, 1999), reveal-
ing a prediction accuracy of 92% and a coverage of 23%. Al-
though methodologically similar to this domain projection
method, PSLT can achieve a wider coverage because it uses a
Bayesian approach that considers the co-occurrence InterPro and
protein membrane domains, thus greatly increasing the feature
space. To determine whether PSLT represents a genuine method-
ological advance over the domain projection method, we tested
it using the same data set and the same scoring scheme used to
assess the prediction accuracy of the domain projection method.
Because this data set annotates proteins as being localized to one
or several of only three compartments (cytoplasmic, nuclear, and
secreted), PSLT predicted proteins to be in one of these three
compartments (the nine compartments PSLT usually predicts on
were collapsed into three). By using this test set, PSLT obtains a
prediction accuracy of 98% and a coverage of 99% (the coverage
is extremely high because this test set is composed only of pro-
teins that contain SMART domains). These results provide a sec-

ond independent data set test to evaluate the prediction accuracy
of PSLT.

Generalization to Other Organisms
and Multicompartmental Prediction
PSLT is a predictor of subcellular localization constructed on hu-
man sequences. To determine its predictive accuracy when ap-
plied to other organisms, we tested it on 2095 mouse proteins
and 1612 proteins from yeast described in the Methods section.
As shown in Table 5, the overall prediction accuracy of PSLT on
this mouse data set is 84% and the coverage is 83%. These high
accuracy and coverage values approach those of PSLT in the self-
consistency test (Table 2). This is not surprising due to the gen-
erally high sequence identity between mouse and human. When
PSLT trained on human sequences is used to predict yeast protein
localizations, the overall prediction accuracy is 56% and the cov-
erage is 53%. These results indicate the positive relationship be-
tween coverage/prediction accuracy and sequence similarity.
This relationship is further corroborated by counting the total
number of motifs in all proteins of each data set that are also
present in proteins in the Hera human data set used to train the
predictor. It can be shown that 87% of motifs found in the pro-
teins of the mouse data set are also present in proteins in the Hera
human data set as opposed to 70% for the motifs found in the
yeast data set and 80% for the LIFEdb data set. Such a predictor
achieves a higher prediction accuracy when considering proteins
from species that are evolutionarily close to the sequences used
to train the predictor. However, as more sequences become avail-
able for training, more motifs will be considered and the predic-
tion accuracy and coverage will increase.

Because PSLT is based on a probabilistic framework, it can
output the probability that a protein is localized to each com-
partment (not only the most likely compartment). Although for
most proteins there is a single compartment that has a high like-
lihood, there do exist some proteins for which there is an (al-
most) equally high likelihood for several compartments. If PSLT
is allowed to predict the two most likely compartments for each
protein (referred to as the second-best test in Tables 2, 3, 5) in the
yeast data set, the accuracy of our framework for predicting the
correct localization increases to 71% as determined by an inde-
pendent data set test with a coverage of 54%. As shown in Table
2, when PSLT is allowed to predict the two most likely compart-
ments for each protein in the Hera human data set, the accuracy

Table 4. Available Experimental Confirmation Concerning 25
Proteins With Localization That Is Not Agreed Upon by the
PSLT Prediction and the LIFEdb GFP Annotation

Correct
LIFEdb GFP
annotationa

Correct
PSLT

predictionb Bothc Neitherd

Protein count (%) 3 (12%) 18 (72%) 2 (8%) 2 (8%)

aProteins with annotation in the LIFEdb data set that agrees with the
information available in the literature.
bProteins with localization predicted by PSLT that agrees with the
information in the literature.
cProteins with annotation in the LIFEdb data set and PSLT predicted
localization that are confirmed in the literature.
dProteins with annotation in the LIFEdb data set and PSLT predicted
localization that both disagree with information in the literature.

Table 5. Prediction Accuracy of PSLT on Yeast and
Mouse Proteins

Independent yeast
data set test

(second-best test)

Independent mouse
data set test

(second-best test)

Sensitivitya PPVb Sensitivitya PPVb

ER 53 (64)% 65 (72)% 67 (78)% 53 (66)%
Golgi 37 (43)% 53 (79)% 70 (85)% 79 (85)%
Cytosol 55 (77)% 18 (35)% 75 (88)% 77 (89)%
Nucleus 73 (83)% 79 (88)% 91 (96)% 92 (97)%
Peroxisome 32 (50)% 30 (45)% 57 (71)% 80 (83)%
Plasma memb 72 (74)% 78 (84)% 71 (72)% 56 (79)%
Lysosome 40 (52)% 62 (88)% 77 (93)% 72 (87)%
Mitochondria 55 (64)% 70 (83)% 79 (89)% 86 (94)%
Extracellular 50 (50)% 25 (33)% 93 (97)% 93 (96)%
Overall accuracy 56 (71)% 84 (92)%
Coverage 53 (54)% 83 (83)%

aSensitivity calculated as TP/(TP + FN).
bPPV: positive predictive value (calculated as TP/(TP + FP)).
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is 86% by 10-fold cross validation test and 97% by the self-
consistency test. When the second-best test is used on the mouse
data set, with PSLT trained on human proteins, the prediction
accuracy is 92% as shown in Table 5. The Hera data set contains
relatively few multicompartmental proteins (shown in Table 1).
It is probable that some of the proteins predicted by PSLT to be
multicompartmental are in fact multicompartmental proteins
even though they are annotated as residing in only one compart-
ment in public databases.

Because the mouse data set contains a higher proportion of
multicompartmental proteins than does the Hera human data
set, we use it to further explore the multicompartment prediction
potential of PSLT. Because PSLT outputs the likelihood of local-
ization to all compartments studied, it is possible to define pro-
teins to be predicted as multicompartmental, if the likelihood
difference between their two most likely compartments is less
than a certain percentage of their most likely compartment. If we
study the proteins for which the likelihoods of the two highest
scoring compartments are within 50% of each other, we identify
20% of the multicompartmental mouse proteins from Table 1
and only 10% of the mouse proteins annotated as being localized
to only one compartment in Table 1. Therefore, the true-positive
rate is two times greater than the false-positive rate (and could be
much greater if some proteins annotated as unicompartmental in
SWISS-PROT actually are multicompartmental as predicted by
PSLT). This holds true for all thresholds between 25% and 75%.
This probably indicates that certain specific combinations of mo-
tifs are more frequently used by multicompartmental proteins
than unicompartmental proteins.

Human Proteome Annotation
We used PSLT trained on the entire Hera human data set to
annotate the 9793 human proteins contained in SWISS-PROT
release 41.25; 7366 of the proteins (75%) were predicted by PSLT
to be localized to one or several of the nine compartments con-
sidered. We took advantage of the multicompartment prediction
capabilities of PSLT to identify proteins for which the likelihood
of the two highest scoring compartments is within 50% of each
other. Table 6 shows the number of proteins predicted to be in
each compartment or pairs of compartments (for the multicom-
partmental proteins). In total, 16% of human proteins are pre-
dicted by PSLT to be localized in more than one compartment;
this is probably a very conservative estimate. We verified the
multicompartmental predictions with subcellular localization
annotations from SWISS-PROT when available. The largest group
of multicompartmental proteins are those predicted to be cyto-
solic and nuclear. Many of these proteins are involved in the
binding, processing, and transport of pre-mRNA and/or mRNA
molecules. This group of proteins also includes signaling regula-

tors such as phosphatases, which are involved in the inactivation
of MAP kinases and SMAD regulators. A second large group of
predicted multicompartmental proteins are the mitochondrial
and cytosolic proteins. Although some of these proteins are con-
firmed to be localized in both organelles by SWISS-PROT, many
proteins in this group represent metabolic enzymes of which
some isozymes are mitochondrial and others are cytosolic. This is
the case for aspartate aminotransferases, aldehyde dehydroge-
nases, hydroxymethylglutaryl-CoA synthases, and creatine ki-
nases. In this case, rather than predicting the localization of the
specific protein, PSLT predicts the localizations of the family of
proteins. PSLT was successful at predicting proteins that are
annotated as both cytosolic and peroxisomal according to
SWISS-PROT as well as proteins that are present on or that shuttle
between the ER and Golgi. A small group of proteins was also
predicted to be localized to the ER and the mitochondria, includ-
ing Bcl2, Bax, and Bak family members, several of which are
known to be found on these two organelles (for review, see Breck-
enridge et al. 2003). These predictions are available at www.
mcb.mcgill.ca/∼hera/PSLT.

Distribution of Motifs in Compartments
The prediction accuracy of PSLT is influenced by how well the
different compartments and cellular processes are characterized
by InterPro motifs and to what extent the different compart-
ments share motifs. As shown in Table 7, some compartments
such as the plasma membrane, nucleus, and extracellular protein
group are better covered by InterPro motifs than are other com-
partments. In fact, >90% of proteins in these organelles contain
at least one such motif. Proteins localized to the Golgi apparatus
contain the fewest motifs. The average number of motifs per
covered protein varies considerably between compartments. The
plasma membrane contains by far the most motifs per protein,
whereas the lysosome contains the least. The high number of
motifs per protein in plasma membrane proteins could reflect the
fact that this group is involved in many signaling events and
proteins localized here are known to interact with many different
proteins. It is also possible that some compartments are not as
well characterized by InterPro motifs than others.

To determine whether PSLT predicts localization based
mostly on the co-occurrence of motifs or on the presence of
single motifs in proteins, we counted the number of proteins
with localization that was predicted by PSLT using more than
one motif. As shown in Table 7, in most compartments, >50% of
proteins are predicted by the co-occurrence of motifs (as opposed
to single motifs). Notable exceptions to this are the Golgi appa-
ratus and the lysosome. In contrast, the localization of 80% of
plasma membrane proteins are predicted by the co-occurrence of
motifs, which is not surprising given the high average number of

Table 6. Number of Human Proteins Predicted in Each Subcellular Compartment or Pair of Compartments Considered

ER Golgi Cytosol Nuclear Pero PM Lyso Mito Secreted

ER 413 (5.6) — — — — — — — —
Golgi 45 (0.6) 125 (1.7) — — — — — — —
Cytosol 12 (0.2) 9 (0.1) 1168 (15.9) — — — — — —
Nuclear 13 (0.2) 15 (0.2) 550 (7.5) 2003 (27.2) — — — — —
Pero 6 (0.1) 0 (0) 22 (0.3) 6 (0.1) 53 (0.7) — — — —
PM 93 (1.3) 8 (0.1) 8 (0.1) 3 (<0.1) 0 (0) 1256 (17.1) — — —
Lyso 16 (0.2) 5 (0.1) 0 (0) 0 (0) 16 (0.2) 1 (<0.1) 84 (1.1) — —
Mito 24 (0.3) 0 (0) 82 (1.1) 8 (0.1) 23 (0.3) 2 (<0.1) 2 (<0.1) 247 (3.4) —
Secreted 9 (0.1) 1 (<0.1) 8 (0.1) 20 (0.3) 0 (0) 160 (2.2) 5 (0.1) 5 (0.1) 840 (11.4)

Percentage of predictable proteins predicted to be in each compartment or compartment pair is shown in parentheses.
Pero indicates peroxisome; PM, plasma membrane; Lyso, lysosome; and Mito, mitochondrion.
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distinct motifs per protein in that compartment. It should be
noted that PSLT also uses additional motif information (the pres-
ence/absence of signal peptides/anchors as well as the number of
transmembrane domains) to predict localization, and as such, all
proteins are actually predicted based on more than one motif. As
proteins in compartments such as the lysosome and the Golgi
apparatus become better characterized as a group and as the data
sets of these organelles increase in size, the prediction accuracy of
PSLT for these organelles should increase.

We also evaluated the extent of motif frequency in compart-
ments. This is defined as the ratio of the total number of occur-
rences of motifs contained within all proteins in a given com-
partment to the total number of distinct motifs contained within
all proteins in this compartment. Such motif frequency values
may give an indication as to the degree of process diversity in the
different compartments. As shown in Table 7, the motif fre-
quency of the nucleus and plasma membrane is much higher
than is the motif frequency for all other compartments. These
two compartments both have large protein families with many
members performing similar functions (e.g., the very large recep-
tor families in the plasma membrane or the transcription factor
families in the nucleus). Because PSLT predicts localization based
on the combinatorial presence of motifs, the performance of the
predictor is influenced by the motif frequency of the different
compartments. In fact, the motif frequency correlates well with
the sensitivity obtained by PSLT for the different compartments.

The extent of motif sharing between the different compart-

ments can also affect the localization prediction accuracy of
PSLT. The motif compartment specificity index shown in Table 7
is the ratio of the number of motifs that are unique to a given
compartment divided by the total number of motifs in the com-
partment. The motif compartment specificity index can be an
indication of the extent of process sharing as well as protein
trafficking and structural motifs shared between the different
compartments. The nucleus contains the lowest proportion of
compartment-specific motifs. The peroxisome has the highest
proportion of compartment-specific motifs; this may indicate
that the peroxisome shares few processes with other compart-
ments or that the proteins involved in processes it shares with
other compartments are characterized by compartment-specific
motifs. The motifs shared by proteins in the largest number of
compartments are shown in Table 8. The proline-rich region is
present in proteins in all compartments considered. The average
number of compartments in which a given motif is present is 1.3.

Taken together, the ratios in Table 7 are an indication of
how InterPro motifs characterize the cell, the various compart-
ments, and processes. The InterPro classification scheme pro-
vides a novel way of describing these entities and of evaluating
the extent of our knowledge of the different organelles.

DISCUSSION
We present a framework PSLT to predict the subcellular localiza-
tion of proteins based on InterPro motifs and protein membrane

Table 7. Characterization of Motif Distribution in Compartments

Coveragea

Average number
of motifs per

covered protein

Proteins predicted
on by PSLT

using >1 motif
Motif

frequencyb
Motif compartment

specificity indexc

ER 83.6% 2.0 56% 2.3 0.49
Golgi 75.0% 1.7 26% 1.7 0.59
Cytosol 89.4% 2.2 59% 1.8 0.43
Nucleus 93.2% 2.3 66% 3.4 0.24
Peroxisome 86.4% 2.1 55% 1.3 0.67
Plasma membrane 94.1% 3.4 80% 3.6 0.47
Lysosome 86.8% 1.4 25% 1.5 0.49
Mitochondria 80.6% 1.9 48% 1.5 0.40
Extracellular 90.1% 1.9 47% 2.5 0.34

aThe coverage represents the percentage of human proteins in a given compartment that contain at least one InterPro
motif.
bThe motif frequency is calculated as the total number of motifs in all proteins in a given compartment divided by the
number of distinct motifs found in proteins in that compartment.
cThe motif compartment specificity index is calculated as the number of distinct motifs that are unique to a given
compartment divided by the total number of distinct motifs in that compartment.

Table 8. Most Widely Used InterPro Motifs

InterPro
entry identifier InterPro entry name

No. of
proteins

No. of
compartments

IPR000694 Proline-rich region 190 9
IPR005225 Small GTP-binding protein domain 28 6
IPR003593 AAA ATPase domain 28 6
IPR002110 Ankyrin repeat 20 5
IPR000719 Protein kinase 69 5
IPR001478 PDZ/DHR/GLGF domain 16 5
IPR000379 Esterase/lipase/thioesterase active site 22 5
IPR005834 Haloacid dehalogenase-like hydrolase 13 5
IPR001687 ATP/GTP-binding site motif A (P-loop) 12 5
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domains. PSLT addresses the problems of low prediction accuracy
for underrepresented compartments, the specific organelle pre-
diction of transmembrane proteins, and most importantly, it al-
lows an increased understanding (and prediction of) multicom-
partmental proteins. PSLT was initially built using only InterPro
motifs. The addition of protein membrane domain information,
including the presence of signal peptides and the number of
transmembrane domains, always improves PSLT under every test
we performed and can increase the prediction accuracy by up to
10%. This information is especially important to distinguish be-
tween plasma membrane and secreted proteins (data not shown).
Because PSLT is built by using a Bayesian framework, it could be
easily further improved by incorporating other types of relevant
information.

When tested on human proteins, PSLT (based on InterPro
motifs and protein membrane domains) achieves an overall pre-
diction accuracy of 78% (with a coverage of 74%) and sensitivity
and positive predictive values between 43% and 93% for all com-
partments considered, including compartments that contain few
proteins. When PSLT is allowed to predict the two most likely
compartments, its ability to predict at least one compartment
well increases to >85% for human proteins. The ability to predict
multicompartmental proteins allows us to estimate that at least
16% of human proteins are in fact multicompartmental. When
used to predict proteins from closely related species such as the
mouse, it achieves high prediction accuracies approaching those
of the self-consistency test.

This type of predictor achieves a reasonable prediction ac-
curacy because protein families and functional units are often
colocalized in the cell. Even when proteins in different com-
partments can be characterized by the same InterPro motif and
thus share some similar features, it is often the case that they
also contain other InterPro motifs capable of differentiating
them. Perhaps these additional motifs also modulate their func-
tion.

Because PSLT uses InterPro motifs to predict localization,
it considers not only known organellar targeting motifs, as sev-
eral other predictors have done in the past, but also the pos-
sible influence on localization of posttranslational modifica-
tions and protein–protein interaction domains and their combi-
nations in proteins. Some posttranslational modifications are
well known to influence protein localization. The most obvious
example of this is probably the addition of lipid anchors to pro-
teins. Phosphorylation has also been shown to cause a change
in localization in many proteins, in particular in regulating the
nuclear-cytoplasmic shuttling of many proteins (Hood and Sil-
ver 1999). In addition, there are several examples of proteins
that do not contain any well-studied organellar targeting motifs
but are known to be targeted to or retained in specific local-
izations through protein–protein interaction motifs. This is no-
tably the case for nuclear proteins retained in the cytosol under
some circumstances, such as NF-�B by I�B proteins (Karin 1999)
or cytosolic signal transducer proteins imported in the nucleus
independently of the Nuclear Localization Signal through direct
interaction with the nuclear pore complex (Xu and Massague
2004). It is also speculated that some peroxisomal proteins (in
particular subunits of oligomers) do not contain known targeting
motifs and rely only on protein–protein interaction motifs
for import into the peroxisome (Rachubinski and Subramani
1995; Hettema et al. 1999). As well, it is likely that some non-
KDEL soluble ER proteins also rely on protein–protein interac-
tions with KDEL-containing proteins to ensure retention in the
ER. PSLT not only allows the prediction of these proteins lacking
classical organellar targeting sequences but will also provide a
method to investigate and better understand the extent of this
phenomenon.

METHODS

Data Sets
The Hera database (www.mcb.mcgill.ca/∼hera; Scott et al. 2004)
was used to generate data sets to train and test PSLT. It currently
contains 2216 human proteins annotated with subcellular local-
ization information with a high degree of certainty (classifica-
tion criteria “c” or “e” in Hera; Scott et al. 2004). These localiza-
tions were determined via studies found in the literature and
annotations in public databases. Three other data sets were also
used as independent testing sets in this study: the LIFEdb GFP
human data set (Simpson et al. 2000), a yeast data set, and a
mouse data set. All data sets are available at www.mcb.mcgill.
ca/∼hera/PSLT.

The LIFEdb database contained the experimentally deter-
mined subcellular localization information for ∼600 GFP-tagged
novel human ORFs at the time of the study. We retrieved all
proteins from the LIFEdb Web site (www.dkfz.de/LIFEdb/LIFEdb.
aspx) and curated this set by eliminating all proteins (1) that are
not annotated as being localized to at least one compartment
considered in this study; (2) in which the amino acid sequence
does not start with a methionine (i.e., probable partial tran-
scripts); and (3) in which genes have multiple alternative tran-
scripts and in which it was not possible to determine which
protein product was actually characterized in the LIFEdb study.
This filtering procedure left us with 392 proteins in the LIFEdb
data set.

The yeast data set was generated by retrieving all proteins
annotated with subcellular localization information from the
Saccharomyces Genome Database (SGD; Dwight et al. 2002; www.
yeastgenome.org/). Only proteins localized to at least one com-
partment considered in our present study were kept. The mouse
data set contains all mouse proteins from SWISS-PROT release
42.10 that are annotated as being localized in at least one com-
partment considered in this study and start with a methionine.
Table 1 shows the number of proteins in each of the compart-
ments for each of the four data sets. To avoid counting proteins
several times, those annotated as being in more than one com-
partment are identified as multicompartmental in Table 1. Thir-
teen proteins are present in both the Hera data set and the LIFEdb
data set.

Generation of Maximal Motif Sets
for Each Compartment
PSLT predicts the subcellular localization of proteins based on the
presence of InterPro motifs in their amino acid sequence. Inter-
Pro motifs are features present in known proteins but can also be
identified in uncharacterized proteins. All proteins considered in
this study were thus analyzed for the presence of such motifs
by using InterProScan (Zdobnov and Apweiler 2001). We con-
sider that a set of proteins that are all localized to the same com-
partment are colocalized. A set of motifs that co-occur in a (non-
empty) set of colocalized proteins is called a motif set. A maximal
motif set is a set of motifs that co-occur in a (nonempty) set
of colocalized proteins with the property that none of the re-
maining motifs co-occur in this set. Note that for each compart-
ment, there may exist more than one maximal motif set. That
is, different subsets of colocalized proteins may have different
maximal motif sets. Figure 1 illustrates the concept of maximal
motif set.

We are interested in finding all maximal motif sets for each
compartment. Although this is a computationally intractable
problem, we use a dynamic programming approach to find these
sets. Intuitively, we begin by identifying all motifs present in at
least one protein localized to a given compartment. These are
simple motif sets consisting of only one motif. Now, in a dy-
namic programming fashion, we extend each of the candidate
motif sets by exhaustively adding all possible motifs one by one.
If any such extended motif set has the property that all members
of the motif set occur in a set of proteins that are colocalized, we
keep this motif set. Otherwise, we discard this candidate. The
algorithm is guaranteed to find the maximal motif sets (although
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it might require exponential time, the computation was feasible
for our human proteins and the InterPro motifs). Throughout
this process, each motif set (and all possible subsets of this motif
set) are annotated with the proportion of proteins in the com-
partment under study that contain the motifs.

Likelihood of Localization
Given a protein and a motif set, M, it contains, we estimate its
likelihood of being in a specific compartment, C, by using Bayes’
rule:

Pr[C � M] = Pr[M � C] � Pr[C]/Pr[M].

Here Pr[M � C] is the probability that the protein contains all
motifs in set M given that we know the protein is localized to
compartment C. This conditional probability is estimated in a
straightforward way from the training set. Also, Pr[M] is the prior
probability of a protein-containing motif set M regardless of
the localization of the proteins containing M. This prior prob-
ability is estimated by determining the presence of InterPro mo-
tifs in all 9793 human proteins from SWISS-PROT release 41.25.
Lastly, Pr[C] is the prior probability of a protein localizing to
compartment C. These compartment priors were ini-
tially evaluated by averaging the number of human proteins an-
notated with localization information in three public databases:
SWISS-PROT (Boeckmann et al. 2003), Human Protein Reference
Database (www.hprd.org/; Peri et al. 2004), and LIFEdb (Simpson
et al. 2000). The compartment priors were subsequently modi-
fied; this modification is described in “Compartment Prior Op-
timization.”

Subcellular Localization Prediction
PSLT is trained by identifying all maximal motif sets for all nine
compartments considered in this study (Table 1). The training
step (described above) generates an estimate of Pr[C � M] for each
motif set M (and each subset of M). Because Pr[M] is estimated by
using all 9793 human proteins from SWISS-PROT release 41.25,
Pr[C] is optimized as described in “Compartment Prior Optimi-
zation” and Pr[M � C] is estimated by using the training set, the
�C Pr[C � M] summed over all compartments is not necessarily
one. However, we can treat these estimates of Pr[C � M] as likeli-
hoods. These estimates of Pr[C � M] are then used to predict the
localization of an unknown protein containing a set of motifs M�
by calculating the likelihood of being in each compartment
given M�. If M� does not match any motif set in a given com-
partment, then a subset of M� with the highest localization like-
lihood is used to predict for that compartment. If no such subset
exists, the likelihood of localization to that compartment is zero.
The compartment that achieves the highest localization likeli-
hood is predicted to be the subcellular localization of the un-
known protein. If several compartments achieve high localiza-
tion likelihoods, the protein can be predicted to be present in all
of these compartments with a specific probability.

The prediction accuracy of PSLT is evaluated in the Results
section by using several different tests. The total prediction ac-
curacy is defined as the number of correctly predicted proteins in
the test set divided by the total number of proteins in the test set.
Because PSLT predicts the localization of proteins based on pro-
tein motifs, it will be unable to predict on proteins not contain-
ing such motifs or proteins containing motifs not used as motif
sets for localization in the training phase of the algorithm. As a
consequence, we exclude such proteins from our prediction ac-
curacy statistics. However, for each reported accuracy estimate,
the coverage (proportion of predictable proteins in the data sets)
is given.

Compartment Prior Optimization
The initial compartment priors were modified by using a genetic
algorithm. This algorithm aims to find the compartment priors
that optimize the overall prediction accuracy. To assess accuracy
during the compartment prior optimization process, we use a
threefold cross validation test. Intuitively, the algorithm pro-
ceeds by “mutating” a randomly chosen compartment prior. It
then readjusts the priors of the remaining compartments and
calculates the localization likelihoods as previously explained. If
the overall prediction accuracy increases compared to previously
created versions of PSLT, this current set of compartment priors
is retained by the genetic algorithm. If the overall prediction
accuracy does not increase, this current set of compartment pri-
ors is retained (i.e., allowed to survive) with probability � initial-
ized to 0.1 and decreasing with time. The genetic algorithm cre-
ates a large population of candidate compartment priors. When
the algorithm is allowed to execute for a sufficiently long number
of “generations,” most of the candidates tend to converge to
similar values. Figure 2 describes the compartment priors that
allow to achieve the highest overall prediction accuracy.

We note that other methods are available, such as structural
EM learning, that provide alternative computational approaches
in which both the compartment prior optimization and the se-
lection of motif sets could potentially be done simultaneously.
However, we chose the above the techniques given the amount
of data available and the computational difficulty of these alter-
native methods.

Additional Protein Characteristics Considered
When available, additional protein characteristics can be used to
modify the probability of localization to any given compart-
ment. Such modifications are possible and easy to implement,
because PSLT is built as a Bayesian network. If the new informa-
tion (I) and the motif sets (M) are independent random variables,
the new information can be used to modify the likelihood of

Figure 1 Visualization of maximal motifs. The hypothetical compart-
ment C illustrated in this figure contains two maximal motif sets: {A,B,C}
and {A,D}. Nonempty subsets of these motif sets are themselves consid-
ered to be motif sets but are not maximal (such as, e.g., {A,B}). {A} is a
nonmaximal motif set that is common to both the {A,B,C} and {A,D}
maximal motif sets.

Figure 2 Optimized compartment priors. The compartment priors rep-
resent the estimate of the percentage of distinct proteins in each com-
partment. These compartment priors were optimized for PSLT as ex-
plained in the Methods section.
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localization generated by PSLT by simply applying Bayes’ rule as
follows:

Pr[C � M,I] = Pr[C � M]*Pr[I � C]/Pr[I].

Essentially, we are “extending” the Bayesian network to include
new information in the initial Bayesian network that uses the
presence of motif sets to compute the Pr[C � M] likelihood. How-
ever, if the additional information and the motif sets are not
independent random variables, the likelihood of localization
should be calculated as follows:

Pr[C � M,I] = Pr[M,I � C]*Pr[C]/Pr[M,I],

which is equivalent to constructing a global Bayesian network
that incorporates simultaneously the motif sets and the new ad-
ditional information.

We investigated the addition of information relating to the
presence of signal peptides and the number of transmembrane
domains. The presence of a signal peptide and the number of
transmembrane domains were respectively evaluated by using
SignalP software (Nielsen et al. 1997) and TMHMM software
(Krogh et al. 2001). When this additional information is treated
as a random variable that is dependent on the motif sets, the
coverage of PSLT increases slightly but the prediction accuracy
decreases by ∼10% (when compared with the original network
using only the motif sets). Furthermore, the time required to
train PSLT also increases substantially. However, if this additional
information is considered to be independent of the motif sets,
the coverage and the time required to train PSLT remain the same
and the prediction accuracy increases by several percentage
points (depending on the type of evaluation performed and the
data set that is being tested). As a consequence, the networks
reported in this study are built assuming the independence of the
presence of a signal peptide, the number of transmembrane do-
mains in a protein, and the InterPro motif sets. Signal peptides
and transmembrane domains will be collectively referred to as
protein membrane domains.

ACKNOWLEDGMENTS
We are grateful to Dr. Scott Bunnell for critical reading of this
manuscript. We wish to thank François Pepin for logistical sup-
port, Dr. Ted Perkins for useful discussions, and Dr. Richard Mott
for kindly making his testing data set available. This work was
supported by grants to D.Y.T. and M.H. from Genome Quebec/
Genome Canada as well as to D.Y.T. from the Canadian Institutes
of Health Research (CIHR). M.S.S. is a recipient of a Canada
Graduate Scholarship (CGS) from CIHR.

REFERENCES
Bell, A.W., Ward, M.A., Blackstock, W.P., Freeman, H.N., Choudhary,

J.S., Lewis, A.P., Chotai, D., Fazel, A., Gushue, J.N., Paiement, J.,
et al. 2001. Proteomics characterization of abundant Golgi
membrane proteins. J. Biol. Chem. 276: 5152–5165.

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A.,
Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, O., Phan, I.,
et al. 2003. The SWISS-PROT protein knowledge base and its
supplement TrEMBL in 2003. Nucleic Acids Res. 31: 365–370.

Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M., and Shore,
G.C. 2003. Regulation of apoptosis by endoplasmic reticulum
pathways. Oncogene 22: 8608–8618.

Cai, Y.D., Liu, X.J., Xu, X.B., and Chou, K.C. 2002. Support vector
machines for prediction of protein subcellular location by
incorporating quasi-sequence-order effect. J. Cell. Biochem.
84: 343–348.

Chou, K.C. 2001. Prediction of protein cellular attributes using
pseudo-amino acid composition. Proteins 43: 246–255.

Chou, K.C. and Cai, Y.D. 2002. Using functional domain composition
and support vector machines for prediction of protein subcellular
location. J. Biol. Chem. 277: 45765–45769.

———. 2003. A new hybrid approach to predict subcellular localization
of proteins by incorporating gene ontology. Biochem. Biophys. Res.
Commun. 311: 743–747.

Claros, M.G. and Vincens, P. 1996. Computational method to predict

mitochondrially imported proteins and their targeting sequences.
Eur. J. Biochem. 241: 779–786.

Drawid, A. and Gerstein, M. 2000. A Bayesian system integrating
expression data with sequence patterns for localizing proteins:
Comprehensive application to the yeast genome. J. Mol. Biol.
301: 1059–1075.

Dwight, S.S., Harris, M.A., Dolinski, K., Ball, C.A., Binkley, G., Christie,
K.R., Fisk, D.G., Issel-Tarver, L., Schroeder, M., Sherlock, G., et al.
2002. Saccharomyces Genome Database (SGD) provides secondary
gene annotation using the Gene Ontology (GO). Nucleic Acids Res.
30: 69–72.

Eisenhaber, F. and Bork, P. 1998. Wanted: Subcellular localization of
proteins based on sequence. Trends Cell. Biol. 8: 169–170.

———. 1999. Evaluation of human-readable annotation in biomolecular
sequence databases with biological rule libraries. Bioinformatics
15: 528–535.

Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. 2000.
Predicting subcellular localization of proteins based on their
N-terminal amino acid sequence. J. Mol. Biol. 300: 1005–1016.

Hettema, E.H., Distel, B., and Tabak, H.F. 1999. Import of proteins into
peroxisomes. Biochim. Biophys. Acta 1451: 17–34.

Hood, J.K. and Silver, P.A. 1999. In or out? Regulating nuclear transport.
Curr. Opin. Cell. Biol. 11: 241–247.

Horton, P. and Nakai, K. 1996. A probabilistic classification system for
predicting the cellular localization sites of proteins. Proc. Int. Conf.
Intell. Syst. Mol. Biol. 4: 109–115.

Hua, S. and Sun, Z. 2001. Support vector machine approach for protein
subcellular localization prediction. Bioinformatics 17: 721–728.

Huang, Y. and Li, Y. 2004. Prediction of protein subcellular locations
using fuzzy k-NN method. Bioinformatics 20: 21–28.

Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W.,
Weissman, J.S., and O’Shea, E.K. 2003. Global analysis of protein
localization in budding yeast. Nature 425: 686–691.

Karin, M. 1999. The beginning of the end: I�B kinase (IKK) and NF-�B
activation. J. Biol. Chem. 274: 27339–27342.

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L 2001.
Predicting transmembrane protein topology with a hidden Markov
model: Application to complete genomes. J. Mol. Biol. 305: 567–580.

Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D.S., Poulin, B., Anvik,
J., Macdonell, C., and Eisner, R. 2004. Predicting subcellular
localization of proteins using machine-learned classifiers.
Bioinformatics 20: 547–556.

Marcotte, E.M., Xenarios, I., van Der Bliek, A.M., and Eisenberg, D.
2000. Localizing proteins in the cell from their phylogenetic profiles.
Proc. Natl. Acad. Sci. 97: 12115–12120.

Michaud, G.A. and Snyder, M. 2002. Proteomic approaches for the
global analysis of proteins. Biotechniques 33: 1308–1316.

Mott, R., Schultz, J., Bork, P., and Ponting, C.P. 2002. Predicting protein
cellular localization using a domain projection method. Genome Res.
12: 1168–1174.

Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D.,
Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P., et al. 2003.
The InterPro Database, 2003 brings increased coverage and new
features. Nucleic Acids Res. 31: 315–318.

Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting
protein localization sites in eukaryotic cells. Genomics 14: 897–911.

Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. 1997.
Identification of prokaryotic and eukaryotic signal peptides and
prediction of their cleavage sites. Protein Eng. 10: 1–6.

Parfrey, H., Mahadeva, R., and Lomas, D.A. 2003. �1-Antitrypsin
deficiency, liver disease and emphysema. Int. J. Biochem. Cell. Biol.
35: 1009–1014.

Payne, A.S., Kelly, E.J., and Gitlin, J.D. 1998. Functional expression of
the Wilson disease protein reveals mislocalization and impaired
copper-dependent trafficking of the common H1069Q mutation.
Proc. Natl. Acad. Sci. 95: 10854–10859.

Peri, S., Navarro, J.D., Kristiansen, T.Z., Amanchy, R., Surendranath, V.,
Muthusamy, B., Gandhi, T.K., Chandrika, K.N., Deshpande, N.,
Suresh, S., et al. 2004. Human protein reference database as a
discovery resource for proteomics. Nucleic Acids Res 32: D497–D501.

Rachubinski, R.A. and Subramani, S. 1995. How proteins penetrate
peroxisomes. Cell 83: 525–528.

Rapoport, T.A. 1992. Transport of proteins across the endoplasmic
reticulum membrane. Science 258: 931–936.

Reinhardt, A. and Hubbard, T. 1998. Using neural networks for
prediction of the subcellular location of proteins. Nucleic Acids Res.
26: 2230–2236.

Scott, M., Lu, G., Hallett, M., and Thomas, D.Y. 2004. The Hera database
and its use in the characterization of endoplasmic reticulum
proteins. Bioinformatics 20: 937–944.

Simpson, J.C., Wellenreuther, R., Poustka, A., Pepperkok, R., and
Wiemann, S. 2000. Systematic subcellular localization of novel

Localization Prediction via Motif Co-Occurrence

Genome Research 1965
www.genome.org



proteins identified by large-scale cDNA sequencing. EMBO Rep.
1: 287–292.

Skach, W.R. 2000. Defects in processing and trafficking of the cystic
fibrosis transmembrane conductance regulator. Kidney Int.
57: 825–831.

Taylor, S.W., Fahy, E., and Ghosh, S.S. 2003. Global organellar
proteomics. Trends Biotechnol. 21: 82–88.

von Heijne, G. 1990. The signal peptide. J. Membr. Biol. 115: 195–201.
Xu, L. and Massague, J. 2004. Nucleocytoplasmic shuttling of signal

transducers. Nat. Rev. Mol. Cell. Biol. 5: 209–219.
Zdobnov, E.M. and Apweiler, R. 2001. InterProScan: An integration

platform for the signature-recognition methods in InterPro.
Bioinformatics 17: 847–848.

WEB SITE REFERENCES
www.mcb.mcgill.ca/∼hera; Human ER Aperçu home page.
www.dkfz.de/LIFEdb/LIFEdb.aspx; LIFEdb database home page.
www.yeastgenome.org/; Saccharomyces Genome Database (SGD).
www.hprd.org/; Human Protein Reference Database home page.
www.mcb.mcgill.ca/∼hera/PSLT; Protein subcellular localization tool.
www.inra.fr/predotar/; Home page of Predotar, a prediction service for

identifying putative mitochondrial and plastid targeting sequences.

Received April 2, 2004; accepted in revised form July 22, 2004.

Scott et al.

1966 Genome Research
www.genome.org


